Mergers, Gamma-Ray Bursts and Gold

The Hebrew University

Tsvi Piran

David Eichler, Mario Livio, David Schramm, Doron Grossmam, Stephan Rosswog, Oleg Korobkin, Ehud Nakar, David Wanderman Ben Margalit

The Hubble Space Telescope June 13th 2013

Is this the "smoking gun" proving the origin of Gold (and other heavy elemets) in the Universe?

Outline

- 1. Nucleosynthesis 101
- 2. Neutron Stars and Mergers
- 3. Gamma-Ray Bursts
- 4. The Li-Paczynski Macronova (kilonova)
- 5. Putting it all togather GRB 130603B
- 6. The origin of Gold

1. Nucleosynthesis 101

How are these elements produces?

Nucleosynthesis 101

BB (Big Bang) Nucleosynthesis

- 24% of the Universe is He.
- This He is produces in the big Bang.

George Gammow

Only* He is produced in the big bang

*and minute quantities of ²H, ³He, ³H, Li and Be

Peebles, Adouze, Schramm, Steigman...

How did other elements form?

He,C,O,Ne,Mg Si,S,Fe,Ni.....

Elements up to Iron are produced in stars

S (slow) Process

 Neutron capture slower than beta decay. Low neutron densities. • time scale - years. Moves along the valley of nuclear stability. • Final abundances depend on the conditions within the site.

r (rapid) Process

Neutron capture faster than beta decay.
High neutron densities.
Time scales – seconds.
On the neutron rich side of nuclear stability.
Uniform final abundances.

s and r processes

Explosive r-process

Supernova

 v flux from the newborn neutron star produce
 excess of neutrons in
 Supernova explosion.

2. Neutron stars and mergers

95% neutrons!

10,000,000

1 cc of neutron star material

Neutron Star Mergers

Decay of neutron star matter

Neutron Star Mergers

Binary Neutron Stars

3. Gamma Ray Bursts

The Vela Satellites

The sky in gamma-Rays

The late 80ies

r-process material
 from Supernovae

Two provocative ideas

LETTERS TO NATURE

Nucleosynthesis, neutrino bursts and γ -rays from coalescing neutron stars

David Eichler*, Mario Livio†, Tsvi Piran‡ & David N. Schramm§

NEUTRON-STAR collisions occur inevitably when binary neutron stars spiral into each other as a result of damping of gravitational radiation. Such collisions will produce a characteristic burst of gravitational radiation, which may be the most promising source of a detectable signal for proposed gravity-wave detectors¹. Such signals are sufficiently unique and robust for them to have been proposed as a means of determining the Hubble constant². However, the rate of these neutron-star collisions is highly uncertain³. Here we note that such events should also synthesize neutronrich heavy elements, thought to be formed by rapid neutron capture (the r-process)⁴. Furthermore, these collisions should produce neutrino bursts⁵ and resultant bursts of γ -rays; the latter should comprise a subclass of observable y-ray bursts. We argue that observed r-process abundances and y-ray-burst rates predict rates for these collisions that are both significant and consistent with other estimates.

90ies: GRBs are cosmological

1992: BATSE - GRBs have a coslomogical distribution

Gamma-Ray Bursts

1997: BeppoSAX – GRBs' afterglow that enables redshift measurements confirming the coslomogical origin

2013

or-process from
Super vae

Supernovae cannot produce A>130

GRE from magnetic flares in galactic neutron stars (E ~10⁴⁰ ergs).

GRBs are
 cosmological
 (E ~10⁵¹ ergs).

Eichler, Livio, TP, Schramm, 88

MacFadyen & Woosley, 98

Indirect Evidence

Direct Evidence

Mergers ejects $0.01-0.04M_{sun}$ with $E_k \sim 10^{50}-10^{51}$ ergs

Stephan Rosswog

4. Macronova* (Li & Paczynski 1997)

Radioactive decay of the neutron rich matter.

• $E_{radioactive} \approx 0.001 \text{ Mc}^2 \approx 10^{50} \text{ erg}$

• A weak short Supernova like event.

 Macronovae follow short GRBs but could appear without a short GRB as those are beamed.

*Also called Kilonova

Bohdan Paczynski

Supernova

Photosphere

Photons escape

Powered by radioactive decay of ⁵⁶Ni->⁵⁶Co->⁵⁶Fe

Radioactive Decay Korobkin + 13; Rosswog, Korobkin + 13

 After a second dE/dt < t^{-1.3} (Freiburghaus+ 1999; Korobkin + 2013)

Photons escape from this region

Increase as we see a large fraction of the matter. Decrease due to radioactive decay

time

Macronova

luminosity

Peak time and peak luminosity

Diffusion time = expansion time <=> Mass of the "emitting region"

$$\frac{m(v)}{v} = \frac{4\pi ct^2}{\kappa}$$

Luminosity

$$L(t) = \dot{\epsilon}(t)m(v) = \dot{\epsilon}_0(t/t_0)^{-\alpha}m(v)$$

Radioactive heating rate /

The peak time

$$\tilde{t}_p \approx \sqrt{\frac{\kappa m_{\rm ej}}{4\pi c \bar{v}}} = 4.9 \,\mathrm{days} \left(\frac{\kappa_{10} m_{\rm ej,-2}}{\bar{v}_{-1}}\right)^{1/2}$$

The peak luminosity

$$\tilde{L}_{p} \approx \dot{\epsilon}_{0} m_{\rm ej} \left(\frac{\kappa m_{\rm ej}}{4\pi c \bar{v} t_{0}^{2}}\right)^{-\alpha/2} = 2.5 \times 10^{40} \,\frac{\rm erg}{\rm s} \,\left(\frac{\bar{v}_{-1}}{\kappa_{10}}\right)^{\alpha/2} m_{\rm ej,-2}^{1-\alpha/2}$$

Macronova light curves Metzger et al., 2011; TP, Nakar, Rosswog, 13

Lanthanides

Periodic Table Of Elements Showing Electron Shells

Gro	up 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 1	۲	The free and	Key	•	Met	Non-me	Halog	ens	The primary determinant of an element's chemical properties is the electron configuration, particularly of the outermost electrons (those in the valence shell).									÷
2	۲	(¢)	AJ Me	Ikali tals	Transition	ansition Metals Poor Metals		Gases	In the periodic table, a period is represented by a row. The number of electron shells an atom has determines what period it belongs to.			١	(b)	٢	(\$)	٢	$\langle \hat{Q} \rangle$	
3				Alkaline Earth Metals	Earth Actinides Metals				In the periodic table a group is represented by a vertical column. The number of electrons in the outermost shell determines the group.									
4	11 hause 1111																	
5									1 Hada 14 H				ACCESS OF ACCESS	10000 10000 10000 10000				
6														No.				
7								0										
	Lanti	nanide	s	Notes -	10000 - 1000000 - 100000 - 100000 - 100000 - 10000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000000	Name of Street o	NO.	North Street	Notes -	A Contraction of the second se		A Contraction of the second	Now Now	A State	No.			No.
	A	tinide	es 💧			How and the second											II NOT	

Why do are the Lanthanides "out" of the table?

The Lanthanides' Opacity Kassen & Barnes 2013

The Lanthanides have "too many" lines

 $\kappa = 10 \text{ cm}^2/\text{gm}$

compare with

 $\kappa = 0.4 \text{ cm}^2/\text{gm}$ for the iron group

 $\kappa_T = 0.1 \text{ cm}^2/\text{gm}$ for electron scattering

Lanthanides dominate the Opacity (Kassen & Barnes 13)

uv or optical -> IR

More detailed estimates Grossman, Korobkin TP Rosswog, 13

Bolometric light curves

Putting it all together 5. Gamma-Ray Burst (GRB) 130603B

GRB 130603B Z=0.356 <=> 1 Gpc = 3 Glyr

Gamma-ray Burst GRB 130603B

Hubble Space Telescope ACS/WFC3

NASA and ESA

STScI-PRC13-29a

GRB130603B @ 9 days AB (6.6 days at the source frame)

HST image (Tanvir + 13)

Macronova?

Tanvir + 13

GRB130603B @ z=0.356 nIR transient

Consistent with Barnes & Kasen (13) and Tanaka & Hotozoka (13)

But Both groups possibly
 overestimated radioactive
 heating rate by a factor of 2-4

The expected signal is slightly too large

If correct

Confirmaiton of the GRB neutron star merger model (Eichler, Livio, TP & Schramm 1989).

Confirmation of the Li-Paczynski Macronova.

Confirmation that compact binary mergers are the source of heavy (A>130) r-process material (Gold, Silver, Platinum, Plotonium, Uranium etc...).

6. The Origin of GOLD

Implications

Mass ejected in a merger

Observed luminosity = 10⁴¹erg/sec @ 6.6 days

$$m_{ej} > 0.02 (\epsilon/0.5)^{-1} m_{\odot}$$

- 4 - 100

of mergers
$$\longrightarrow N = 2.5 \times 10^5 \left(\frac{M^{A>130}}{10^4 m_{\odot}}\right) \left(\frac{m_{ej}}{0.04 m_{\odot}}\right)^{-1}$$

A>130 r-process material in the Galaxy

Mergers' Rate

$$R_{merger} = 20 \left(\frac{m_{ej}}{0.04m_{\odot}}\right)^{-1} \left(\frac{M^{A>130}}{10^4 m_{\odot}}\right) \text{ Myr}^{-1}$$
$$= 200 \left(\frac{m_{ej}}{0.04m_{\odot}}\right)^{-1} \left(\frac{M^{A>130}}{10^4 m_{\odot}}\right) \text{ Gpc}^{-3} \text{yr}^{-1}$$

The rate of short GRBs Guetta & TP 2006; Wanderman & TP 2013

- Typical spiral-in phase of
 2.5 Gyr.
- Consistent with R_{merger} = 200 Gpc⁻³ yr⁻¹ for a reasonable beaming factor of 40.
- Consistent with rate estimates based on galactic neutron star binaries.

But:

The ejected mass is about 0.04 M_{sun}. The minimal mass is 0.02 M_{sun}.

This is rather large for neutron star binary merger.

Is the solution black holeneutron star merger?

Early nucleosynthesis – a challenge

A population of fast mergers?

Figure 6. Europium abundance in a large sample of old and young stars, age being inferred from Fe abundance. The halo star HD 122563 is almost as Fe-poor as CS 22892-052, and therefore presumably just about as old, but it has much less Eu, an element made only in the r-process. The red line is a least-square-fit to the data, and the gray flanking curves indicate decreasing scatter in the data with increasing time. Numerical conventions are as in figure 5. Zero on the abscissa means Fe abundance like that of the 4.6-billion-year-old Sun.

From Cowan and Thielemann

The radio - flare (Nakar & Piran 2011) Testing the Macronova interpretation

A long lasting radio flare due to the interaction of the ejecta with surrounding matter may follow the macronova.

Supernova -> Supernova remnant Macronova -> Radio Flare

Radio frlares from neutron star mergers

dominated by high velocity ejecta A flare from GRB 130603B should be easily detected by the EVLA (if external density is not too small)

Summary

There are a few caveats - But
The nIR flare that followed the short GRB 130603B could have been a Macronova. If so than:
✓ Short GRBs arise from mergers.
✓ Gold and other A>130 elemets are produced in mergers. (But large m_{ej} and short time delay).

A radio flare may confirm this!
 Another strong well localized short GRB is expected within a year or so.

One cannot give a talk in Astronomy these days without a reference to the Solar System and life.

The early Solar System had ²⁴⁴Pu (τ = 117 Myr) Wasserburg et al, (2006).

No evidence for ²⁴⁴Pu deposition in deep-sea crust and sediment accumulated over the last ~25 Myr (M. Paul et al., 2001; A. Wallner et al., in preparation). => ²⁴⁴Pu is NOT from the Inter Stellar Medium! => Actinides production near the early Solar

System just prior to formation.

the contraction of the contracti

Gerry Wasserburg

 Irregular production from rare episodes.
 => E.g. a merger within <50 pc=150 lyr from the solar system just prior to its formation?

The End?